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ABSTRACT

Equations governing the coupled thickness-shear and flexural
vibrations of isotropicy elastic plates are solved for ths case of
a circular disk with free edges. The results of computations are
given for the resonant fregquencies analogous to those which would be
excited in an AT-cut quartz disk with full elactrode coating. A
marked differencs is observed between the frequency spectrum of the
disk and the spectrum of cylindrical vibrations of a rectangular
plate. The difference is due to the presence of thickness-twist
modes of motion, in the disk, which, along with the thickness-shear

modes, are coupled to the flexural modes,
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Introduction

This is the seventh in a series of papers on vibratlions of plates.
The first paper1 conteined a derivation of isotropic plate equations
which accommodate the phenomenon of coupling between flexural and
thickness-shear modes of motion. These esquations were later extended
to take into account crystal platesz, plezoeleciric crystal plates,
plates of varying thickness, plates with incomplete electrodes and plates
with specially shaped electrodes. (The rirst! and second? papsrs are
referred to as I and II in the sequel.) The solutions of the various
equations, given as illustrative examples in these papers, were all con-
fined to cylindrical motions, that is, to one-dimensional problems.

We return, now, to the simplest (isotropic) form of the equations
to solve a two-dimensional problem. We have in mind the antisymmetric
modes of motion that are excited in an AT-cut quartz disk. However,
the additional mathematical complexities introduced by the cireular
shape of the plate make it advisable to consider, first, the corres-
ponding motions of an isotropic disk. It seems likely that the modes
of motion and the frequency spectrum of the isotropic disk will be found
to differ insignificantly from those of the quartz disk., This is because
the two controlling parameters are the shape of the plate and the ratio

of the plate-flexurse modulus to the thickness-shear m~dulus. The former

N

Ro D. }‘ﬁn(ilin’ J. Appl. t‘hch. 1.:8_, 31"38 (1951).
R. D. Mindlin, J. Appl., Phys. 22, 316-323 {1951).
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is the same for the two casces, and the laiter has been made identical,
in the computations, simply by choosing Pcicsen's ratio, for the iso-
tropic material, to give the modulus ratio appropriate to the AT-cut of
quartz, The lateral elastic constants, it is true, are not quite the

AL o

same, but the discrepancy is small, and its influence on the motion is

We giveyhere, the exact solutions of the equations for the iso-
tropic, free disk and the results of detailed computations of the fre-
quencies in the neighborhood of the thickness-shear frequency of an
infinite plate. The frequency spectrum of the disk is found to have a
different character from that obtained in II for the cylindrical vibra-
tions of a rectangular plate. At tirst glance, it appears that the
thickness~-shear fundamental and its overtones are multi-valued, i.e.,
corresponding to the fundamenrtal and to each overtone of thickness-shear
in the rectangi'ar plate, there appears to be more than one resorant
frequency in the disk. Upon closer examination, it develops that the
additional resorances are due tc the presence of a trickness-twist mode
and its overtones, in which the displacement is a twist about an axis
normal to the plate. Ths complete fraquency spectrum is the result of

coupling between thickness-shear and flexure and beiween thickness-twist

and flexure.

Plate Ecuations

In T and II, the plate wguations were deduced from the three-
dimensional equations of elasticity, referred to a rectangular coordinate

system, The resulting equations may be transformed to a pclar coordinate
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system, appropriate to the circular disk, but it is simpler to rederive

the plate equaticna in the new system cf coordinates. Trus, the assumed

form of the displecements, in place of I(10) or II(5), is

4 gV (r08),  dymy iy (n0,8), w9 (r,6,¢) ()

s i
whery 7 and 6 are polar coordinates defined by «x =rcosd, z =1r1s5/70,

1.e.y the ¢ axis is normal to the plane of the plate.

&

The derivation of the plate equations prosceeds as before. Thus,

correspending to I(14415) or II(10), we have plate-stress equations of ’

motion
M , 9Mr‘6 .M. =M o/,) az ,
__.-£ = T —_————— — = iz
o tr 28 r & i/?_' i
5 AT
Mg 1 My My (y = ch 7 |
r i 06 r o 12 pt* () '
2. |
r r 26 r j t*

where ‘0 is the dansity, A is the thickness of the plate
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and the plate-

stress components are given in terms of the piate-displacements by

oY 7, ¢
moeol e le e 2]
? oY,
MQ:D[-:;(\,I;+_5‘£€)+)1§—,€
D 2 | 2
Mo = 29[ L( 2y ) + 2%]
Qr:‘ K.z/“h(kz"”-#z‘_?:)
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where 17 = 5113,//2 (/.,71) y £ 4t 5 v are Young's wodulus, the shear
modulus and Polsson's ratio, respectively. and K = /2.

If (3) were substituted in (2) the resulting plete-displacement.
equations of motion would be those corresponding to I1(16) or II(11). How-
ever, in the present cese it is more convenient to work with the alterna-
tive formulation of the equations given by 1(62,63). In polar coordinates;

agsin omitting a factor e‘Pt, these btecons

"71 | OH
‘p (U'-/) —;4'(6"/) ai‘ * - 5%

2 A 7, M
‘/Z;’("?")ﬁ%+(d;--/)ra&_ T %)
7= *Nh

(v*+8%) %, =0

(V4 §¥)y, =0 (5)

(v + w?) H

where
~ —5)? ¢
58 [Restf(R=-5)+ 4L ] -
g,a = (& FIRL - 57)”
(7)
wt = 2 (RE=571)/C1->)
(8)
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Solution of Equations of Motion

In view of the modes of motion

the appropriate solutions cf (5) are
v = A J(4r)cosé

” - AZ‘{(J;r) s 6

/72

H = AyJ (wr) siné

of interest in the present case,

(10)

where LZ(L) is Bessel’s function of the first kind, of order unity, and

A‘ y Ay A3 are arbitrary constants. These are the modes of circum-

ferential order unity. There are alsc modes of higher and lower circum-

ferential order in which, for example, 7 = Ay I (J: r)cosnb, n=01,2, -,

7

but we are not concerned with them here.

For the vibrations of a plate with free edzes, the boundary condi-

tions are

M=My,=Q =0 at r-a (11)

r

where a 1is the radius of the disk.

becone

Using (3)y (4) and (10), Equations (11)
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+ [waJo(wa) -ZJ;(wa)J A, =0
[Sad(Sa) -2 (fa)] (5,-1) A,
v [ Gat(Ga)-25(fal) (g, -1) A,

+ [(2— w-—z—‘--%l)\]"(wa) - wa‘To(wa?]AE}

[da 3,(5a) - J(Ga)]q, A,
v [4a 5(50) - J(Ea)] %A,

T(raa‘A =0

T‘ -, £1) ;T3

Freouency Equation

(12)

"
o

Equations (12) comprise a system of three homogeneous, algebraic

equations on the unknowns A, , A,» A,. The vanishing of the determinant

of their coefficients yields an eouations for the determination of the fre-

quency p through d: y dz and .

This secular ecuation, expressed in a

form convenient for desk-calculator computation, reads:

e
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h S Ay ({
1+9 d 9-/° 4
32 > 2
=g/ (/+/3/5)[ zm/’)] P
| 1+9 1-35° (1=-7)(1+9) s
|
. /’52[6‘ §(1+73%) ] 0
iz (1-»)(1+9) +f =
where
N
- = S
5-&/7, y-da, g=&/
[Z :‘Z)‘(Ccdv)/‘]/'(cz,dl)) (‘—/JZJ“
2(r+37)
(] ) z ) 2 / (/—'Y)(’*,Kl)
2
Now J;Z?O for all values of /070 while Jz‘ %0 according
as f?% P s where S =7 6#49),/2//) is the frequency of the first
thickness-shear mode of an infinite plate. Hence; /2 vill be real or
imapinary according as p 7 5 . Equation {122) 12 a useful form for
F 7P - In the range /;415 y let 4 - c/j/ s so that the frequency
equation reads
\ e
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/¢? /% /+3 2 __(/~v)(/f?)

A g (=5
/3 [4 - (/—v)(/+§) (f/

G = L (s /1 (8y)

G, = L(ep[L <)

N

= /g'm--/sﬁ)

and Z (x), £, () are modified Bessel's functionsof the first kind.
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(13b)

From the relation /3 :OZ /cf’ and Equation (é), explicit expres-

sions for the frequency may be obtained. Thusy
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/F=[1-6(+97/g (N/S")l]-#/z‘ _

A

PIF =[1+ ﬁ,’(ug)"/g (1 _./3'7-)’-]"" - (14)
: )

Further, from the relation } = da

dlh= g (P Cs ) /3000 g)]”™ -
(15)

d/h = /j (ﬁ/p)[(hﬂ,}c)/l?,(/x#g )]!/z) F<F

where d is the plate diameter,

Computation of Freguencies

Equations (13), (14) and (15) constitute the solution of the prob-
lem. For a given material the wvalues of v and % ars fixed. Choosing ¢
value of A or f3 fixes p/'E by (14) end determines an infinite set of
rootsy ) s of (13). For the particular /3 or /3, each of these roots deter-
mines a ratio d/h s thus giving an infinite set of d/h correspcnding
to every value of /9/ P

For the isotropic plate, the ratio of the thicknegs-shear modulus

to the plate flexure moduius is

g = i -v) 24
wnile; Tor the AT-cut of quartz,

2
7 (@73

j ) /Z(C,, - ng/czz)
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where the elastic constants are referred to the coordinates of the (rotated)
AT section. For this cut of quartz, 3 = 0,283, Hence, an {sotropic plate
with v = 0,312 gives the same value of J asan AT quartz plate. The
computations were made for this value of v .

To facilitate the task of finding the roots } of Equations (13),

for a series of values of fa/}S ; tables were computed of the functions:

Jx) /T (x) 6(.01)100

Z,(<)/T () 0(.01)10, 10(.02)16,
16(.1)20, 20(1)37

to six decimals.’ The subsequent numerical work, carried out on a desk
calculator, ylelded the r~esonant frequencies of vibration depicted in Fig. 1.

Tha flerural modes, in the lower pari cf Fig. 1, are those of even
order I = 24436 ... 9 and are similar to those in the lower part of Fig. 1
of II. However, the upper parts ( p/p >/ ) of the two Tigures are differ-
ent, For exampls, in the case of the rectangular plate the thicknass-sheur
fundamental couples with every even flexural mode in turn, but, in the disk,
the thicknesgs-shear fundamentsl appears to couple only with alternate, even,
flexural modes. As a result, the thickness-~shear fundamental appears to
be double-wvalued.

The apparent anomaly is resolved when it is recognized that there
i3 present a set of thickness-twist modes in addition to thickness-shear
and flexural modes, Mathematically, the additional modes derive from the

solenoidai, retarded potential A . Their uncoupled frequencies may be

3 The computation of the tables of JL(x) /T, (x} was performed by 3. Poley
on equipment made available by the Watson Scientific Computing Laboratory
of the International Business Machine Corporation. Both tables are
stored in the files of the Department of Civil Engineering, Columbia
University.
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obtained, approximately, hy setting 7 =0 , in the equntions, so that

is the only potential left. Then we hsavse

(Vi+ W) H =0

_ I OH . oH
k//r T o8 % T or
’ 12

Mr{g _ - D(’Z"—") (22_]?_2+ (l)t')H

= -D(1-v)@® /13}('((er) s &

where

. {
flwi) - (—%i = 4 )J;(wr} — = fv(wr)

N

Applying only the boundary condition M, =0 on r-a , we obtain the
gecular equation f(wa) =0 4 or
2¢,y f; = 4 - gyt (16)

The roots of (16), in conjunction with (14) and (15), give the approx-
imate frequency spectrum (F/;E VSa cf//) ) of the thickness-tuist modes.
The cuvrves ard asymptotic to p/,b' =/ eand are very nearly tangent to the
almost horizontal portions cf ths curves in Fig. 1. That is, the thickness-
twist modes have frequencies very close to those of the corresponding
thickness-shear modes, The effect, of two such ncignvoring familles, on
the coupling with the flexural modes is illustrated in Fig. 2. In Fig. 2a
is shown the usuasl spectrum resulting from the coupling of a family of odd
thickness-shear modes ( 1 = 143 ... ) and even flexural modes (r = 20,22 ...
In Fig. 2b a family of thickness-twist modes (% = 1,3 ... ), closely par-
alleling the thickness-shear modess is added. If the result were to be

interprated as coupling between flsxure and thickness-shear alone, it would

=11
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appear that the thickness~sheer modss are double-valued and coupls only
with elternate flexure modes. This would be especielly so if the coupling
were strong encugh to smooth out the kipks in the almost horizontal por-
tions of the curves, as ic the case in Fig. 1, However,; when the presence
of the *thickness-twist modes is taken into account, there are no anomalies.

It should be observed that the case described here 1s a degenerate
one of coupling of three families of modesy bscause, although there is
coupling between thickness-sheer and flexure and between thickness-twist and
flexure, there 1s nc coupling bstween thickness-shear and thickness-twist.,
An example in which there i1s full ccupling of the three families will be

described in s subsequent paper,
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(a) Freguency spectrum for coupling between thickness-shear
and flexural modes.

(b) Frequency spectrus for coupling between thickness-sheer
end flexural modes and between thickness-twist and flex-
ural modes. with no coupling between shear and twist modes.

e ———

o e ) —— -

Lo P e 0

e & — RIS ¥ 4 o A < e e



	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020

